ASVAB Math Knowledge Solids Practice Test 163080 Results

Your Results Global Average
Questions 5 5
Correct 0 2.94
Score 0% 59%

Review

1

The dimensions of this cylinder are height (h) = 9 and radius (r) = 6. What is the surface area?

49% Answer Correctly
126π
80π
30π
180π

Solution

The surface area of a cylinder is 2πr2 + 2πrh:

sa = 2πr2 + 2πrh
sa = 2π(62) + 2π(6 x 9)
sa = 2π(36) + 2π(54)
sa = (2 x 36)π + (2 x 54)π
sa = 72π + 108π
sa = 180π


2

The dimensions of this cube are height (h) = 2, length (l) = 6, and width (w) = 4. What is the surface area?

50% Answer Correctly
314
64
178
88

Solution

The surface area of a cube is (2 x length x width) + (2 x width x height) + (2 x length x height):

sa = 2lw + 2wh + 2lh
sa = (2 x 6 x 4) + (2 x 4 x 2) + (2 x 6 x 2)
sa = (48) + (16) + (24)
sa = 88


3

The dimensions of this cylinder are height (h) = 4 and radius (r) = 4. What is the volume?

63% Answer Correctly
288π
320π
64π
108π

Solution

The volume of a cylinder is πr2h:

v = πr2h
v = π(42 x 4)
v = 64π


4

The dimensions of this cube are height (h) = 1, length (l) = 4, and width (w) = 2. What is the volume?

83% Answer Correctly
189
8
70
147

Solution

The volume of a cube is height x length x width:

v = h x l x w
v = 1 x 4 x 2
v = 8


5

The dimensions of this cylinder are height (h) = 9 and radius (r) = 6. What is the surface area?

49% Answer Correctly
126π
80π
30π
180π

Solution

The surface area of a cylinder is 2πr2 + 2πrh:

sa = 2πr2 + 2πrh
sa = 2π(62) + 2π(6 x 9)
sa = 2π(36) + 2π(54)
sa = (2 x 36)π + (2 x 54)π
sa = 72π + 108π
sa = 180π