Cards | 10 |

Topics | Block and Tackle, Boyle's Law, Force Lines of Action, Modulus of Elasticity, Pascal's Law, Power, Screw, Specific Gravity, Third-Class Lever |

Two or more pulleys used together constitute a block and tackle which, unlike a fixed pulley, does impart mechanical advantage as a function of the **number of pulleys** that make up the arrangement. So, for example, a block and tackle with three pulleys would have a mechanical advantage of three.

Boyle's law states that "for a fixed amount of an ideal gas kept at a fixed temperature, pressure and volume are inversely proportional". Expressed as a formula, that's \(\frac{P_1}{P_2} = \frac{V_2}{V_1}\)

**Collinear** forces act along the same line of action, **concurrent** forces pass through a common point and **coplanar** forces act in a common plane.

The modulus of elasticity measures how much a material or structure will deflect under stress. **Stretch modulus** is longitudinal stretch (like stretching raw bread dough), **shear modulus** is longitudinal deflection (like the horizontal displacement of a stack of magzines when a heavy object is placed upon them), and **bulk modulus** is compression of volume (like the compression of a loaf of bread under a heavy can at the bottom of a grocery bag).

Pascal's law states that a pressure change occurring anywhere in a confined incompressible fluid is transmitted throughout the fluid such that the same change occurs everywhere. For a hydraulic system, this means that a pressure applied to the input of the system will increase the pressure everywhere in the system.

Power is the rate at which work is done, **P = w/t**, or work per unit time. The **watt (W)** is the unit for power and is equal to 1 joule (or newton-meter) per second. **Horsepower (hp)** is another familiar unit of power used primarily for rating internal combustion engines. A 1 hp machine does 550 ft⋅lb of work in 1 second and 1 hp equals 746 watts.

A screw is an inclined plane wrapped in ridges (**threads**) around a cylinder. The distance between these ridges defines the **pitch** of the screw and this distance is how far the screw advances when it is turned once. The mechanical advantage of a screw is its circumference divided by the pitch.

Specific gravity is the ratio of the density of equal volumes of a substance and water and is measured by a hyrdometer.

A third-class lever is used to increase distance traveled by an object in the same direction as the force applied. The fulcrum is at one end of the lever, the object at the other, and the force is applied between them. This lever does not impart a mechanical advantage as the effort force must be greater than the load but does impart **extra speed** to the load. Examples of third-class levers are shovels and tweezers.