Cards | 10 |

Topics | Boyle's Law, Coefficient of Friction, Conservation of Mechanical Energy, Gear Ratio, Gravitational Potential Energy, Joules, Newton's Second Law of Motion, Specific Gravity |

Boyle's law states that "for a fixed amount of an ideal gas kept at a fixed temperature, pressure and volume are inversely proportional". Expressed as a formula, that's \(\frac{P_1}{P_2} = \frac{V_2}{V_1}\)

Coefficient of friction (**μ**) represents how much two materials resist sliding across each other. Smooth surfaces like ice have low coefficients of friction while rough surfaces like concrete have high μ.

As an object falls, its potential energy is converted into kinetic energy. The principle of conservation of mechanical energy states that, as long as no other forces are applied, total mechanical energy (PE + KE) of the object will remain constant at all points in its descent.

The mechanical advantage (amount of change in speed or torque) of connected gears is proportional to the **number of teeth** each gear has. Called gear ratio, it's the ratio of the number of teeth on the larger gear to the number of teeth on the smaller gear. For example, a gear with 12 teeth connected to a gear with 9 teeth would have a gear ratio of 4:3.

Gravitational potential energy is energy by virtue of gravity. The higher an object is raised above a surface the greater the distance it must fall to reach that surface and the more velocity it will build as it falls. For gravitational potential energy, **PE = mgh** where m is mass (kilograms), h is height (meters), and g is acceleration due to gravity which is a constant (**9.8 m/s ^{2}**).

The Joule (J) is the standard unit of energy and has the unit \({kg \times m^2} \over s^2\).

Newton's Second Law of Motion states that "The acceleration of an object as produced by a net force is directly proportional to the magnitude of the net force, in the same direction as the net force, and inversely proportional to the mass of the object." This Law describes the **linear relationship** between mass and acceleration when it comes to force and leads to the formula **F = ma** or force equals mass multiplied by rate of acceleration.

Specific gravity is the ratio of the density of equal volumes of a substance and water and is measured by a hyrdometer.