Cards | 10 |

Topics | Gear Trains, Inclined Plane, Kinetic Energy, Mechanics, Normal Force, Pascal's Law, Power, Structural Loads, Third-Class Lever, Wheel and Axle |

Connected gears of different numbers of teeth are used together to change the **rotational speed** and **torque** of the input force. If the smaller gear drives the larger gear, the speed of rotation will be reduced and the torque will increase. If the larger gear drives the smaller gear, the speed of rotation will increase and the torque will be reduced.

An inclined plane is a simple machine that reduces the force needed to raise an object to a certain height. Work equals force x distance and, by increasing the distance that the object travels, an inclined plane reduces the force necessary to raise it to a particular height. In this case, the mechanical advantage is to make the task easier. An example of an inclined plane is a ramp.

Kinetic energy is the energy of movement and is a function of the mass of an object and its speed: \(KE = {1 \over 2}mv^2\) where m is mass in kilograms, v is speed in meters per second, and KE is in joules. The most impactful quantity to kinetic energy is velocity as an increase in mass increases KE **linearly** while an increase in speed increases KE **exponentially**.

Mechanics deals with **motion** and the forces that produce motion.

Normal force (**F _{N}**) represents the force a surface exerts when an object presses against it.

Pascal's law states that a pressure change occurring anywhere in a confined incompressible fluid is transmitted throughout the fluid such that the same change occurs everywhere. For a hydraulic system, this means that a pressure applied to the input of the system will increase the pressure everywhere in the system.

Power is the rate at which work is done, **P = w/t**, or work per unit time. The **watt (W)** is the unit for power and is equal to 1 joule (or newton-meter) per second. **Horsepower (hp)** is another familiar unit of power used primarily for rating internal combustion engines. A 1 hp machine does 550 ft⋅lb of work in 1 second and 1 hp equals 746 watts.

A **concentrated** **load** acts on a relatively small area of a structure, a **static uniformly distributed load** doesn't create specific stress points or vary with time, a **dynamic load** varies with time or affects a structure that experiences a high degree of movement, an **impact load** is sudden and for a relatively short duration and a **non-uniformly distributed load** creates different stresses at different locations on a structure.

A third-class lever is used to increase distance traveled by an object in the same direction as the force applied. The fulcrum is at one end of the lever, the object at the other, and the force is applied between them. This lever does not impart a mechanical advantage as the effort force must be greater than the load but does impart **extra speed** to the load. Examples of third-class levers are shovels and tweezers.

A wheel and axle uses two different diameter wheels mounted to a connecting axle. Force is applied to the larger wheel and large movements of this wheel result in small movements in the smaller wheel. Because a larger movement distance is being translated to a smaller distance, force is increased with a mechanical advantage equal to the **ratio of the diameters of the wheels**. An example of a wheel and axle is the steering wheel of a car.