Questions | 5 |

Topics | Hydraulic Pressure, Power, Torque, Wheel and Axle, Work |

Hydraulics is the transmission of force through the use of liquids. Liquids are especially suited for transferring force in complex machines because they compress very little and can occupy very small spaces. Hydraulic pressure is calculated by dividing force by the area over which it is applied: **P = F/A** where F is force in pounds, A is area in square inches, and the resulting pressure is in **pounds per square inch (psi)**.

Power is the rate at which work is done, **P = w/t**, or work per unit time. The **watt (W)** is the unit for power and is equal to 1 joule (or newton-meter) per second. **Horsepower (hp)** is another familiar unit of power used primarily for rating internal combustion engines. A 1 hp machine does 550 ft⋅lb of work in 1 second and 1 hp equals 746 watts.

Torque measures force applied during rotation: **τ = rF**. Torque (τ, the Greek letter tau) = the radius of the lever arm (r) multiplied by the force (F) applied. Radius is measured from the **center of rotation **or fulcrum to the point at which the perpendicular force is being applied. The resulting unit for torque is newton-meter (N-m) or foot-pound (ft-lb).

A wheel and axle uses two different diameter wheels mounted to a connecting axle. Force is applied to the larger wheel and large movements of this wheel result in small movements in the smaller wheel. Because a larger movement distance is being translated to a smaller distance, force is increased with a mechanical advantage equal to the **ratio of the diameters of the wheels**. An example of a wheel and axle is the steering wheel of a car.

Work is accomplished when force is applied to an object: **W = Fd** where F is force in newtons (N) and d is distance in meters (m). Thus, the more force that must be applied to move an object, the more work is done and the farther an object is moved by exerting force, the more work is done.