| Your Results | Global Average | |
|---|---|---|
| Questions | 5 | 5 |
| Correct | 0 | 3.14 |
| Score | 0% | 63% |
What's the first gear in a gear train called?
input gear |
|
idler gear |
|
driven gear |
|
driver gear |
A gear train is two or more gears linked together. Gear trains are designed to increase or reduce the speed or torque outpout of a rotating system or change the direction of its output. The first gear in the chain is called the driver and the last gear in the chain the driven gear with the gears between them called idler gears.
| 3.57 lbs. | |
| 0 lbs. | |
| 14.29 lbs. | |
| 35 lbs. |
To balance this lever the torques at the green box and the blue arrow must be equal. Torque is weight x distance from the fulcrum so the equation for equilibrium is:
Rada = Rbdb
where a represents the green box and b the blue arrow, R is resistance (weight/force) and d is the distance from the fulcrum.Solving for Rb, our missing value, and plugging in our variables yields:
Rb = \( \frac{R_ad_a}{d_b} \) = \( \frac{5 lbs. \times 5 ft.}{7 ft.} \) = \( \frac{25 ft⋅lb}{7 ft.} \) = 3.57 lbs.
| 43.75 lbs. | |
| 10.94 lbs. | |
| 21.88 lbs. | |
| 175 lbs. |
To balance this lever the torques at the green box and the blue arrow must be equal. Torque is weight x distance from the fulcrum so the equation for equilibrium is:
Rada = Rbdb
where a represents the green box and b the blue arrow, R is resistance (weight/force) and d is the distance from the fulcrum.Solving for Ra, our missing value, and plugging in our variables yields:
Ra = \( \frac{R_bd_b}{d_a} \) = \( \frac{25 lbs. \times 7 ft.}{4 ft.} \) = \( \frac{175 ft⋅lb}{4 ft.} \) = 43.75 lbs.
Which of the following is not true of a first-class lever?
increases distance |
|
changes the direction of force |
|
increases force |
|
decreases distance |
A first-class lever is used to increase force or distance while changing the direction of the force. The lever pivots on a fulcrum and, when a force is applied to the lever at one side of the fulcrum, the other end moves in the opposite direction. The position of the fulcrum also defines the mechanical advantage of the lever. If the fulcrum is closer to the force being applied, the load can be moved a greater distance at the expense of requiring a greater input force. If the fulcrum is closer to the load, less force is required but the force must be applied over a longer distance. An example of a first-class lever is a seesaw / teeter-totter.
Drag is a type of:
potential energy |
|
friction |
|
kinetic energy |
|
work |
Drag is friction that opposes movement through a fluid like liquid or air. The amount of drag depends on the shape and speed of the object with slower objects experiencing less drag than faster objects and more aerodynamic objects experiencing less drag than those with a large leading surface area.