Questions | 5 |

Topics | Boyle's Law, Force of Friction, Power, Principle of Moments, Third-Class Lever |

Boyle's law states that "for a fixed amount of an ideal gas kept at a fixed temperature, pressure and volume are inversely proportional". Expressed as a formula, that's \(\frac{P_1}{P_2} = \frac{V_2}{V_1}\)

The formula for force of friction (F_{f}) is the same whether kinetic or static friction applies: **F _{f = }μF_{N}**. To distinguish between kinetic and static friction, μ

Power is the rate at which work is done, **P = w/t**, or work per unit time. The **watt (W)** is the unit for power and is equal to 1 joule (or newton-meter) per second. **Horsepower (hp)** is another familiar unit of power used primarily for rating internal combustion engines. A 1 hp machine does 550 ft⋅lb of work in 1 second and 1 hp equals 746 watts.

When a system is stable or balanced (**equilibrium**) all forces acting on the system cancel each other out. In the case of torque, equilibrium means that the sum of the anticlockwise moments about a center of rotation equal the sum of the clockwise moments.

A third-class lever is used to increase distance traveled by an object in the same direction as the force applied. The fulcrum is at one end of the lever, the object at the other, and the force is applied between them. This lever does not impart a mechanical advantage as the effort force must be greater than the load but does impart **extra speed** to the load. Examples of third-class levers are shovels and tweezers.