Questions | 5 |

Focus | Other Forces |

Topics | Drag, Hydraulic Pressure, Principle of Moments, Torque |

Question Type | Questions |

Drag is friction that opposes movement through a fluid like liquid or air. The amount of drag depends on the shape and speed of the object with slower objects experiencing less drag than faster objects and more aerodynamic objects experiencing less drag than those with a large leading surface area.

Hydraulics is the transmission of force through the use of liquids. Liquids are especially suited for transferring force in complex machines because they compress very little and can occupy very small spaces. Hydraulic pressure is calculated by dividing force by the area over which it is applied: **P = F/A** where F is force in pounds, A is area in square inches, and the resulting pressure is in **pounds per square inch (psi)**.

When a system is stable or balanced (**equilibrium**) all forces acting on the system cancel each other out. In the case of torque, equilibrium means that the sum of the anticlockwise moments about a center of rotation equal the sum of the clockwise moments.

Torque measures force applied during rotation: **τ = rF**. Torque (τ, the Greek letter tau) = the radius of the lever arm (r) multiplied by the force (F) applied. Radius is measured from the **center of rotation **or fulcrum to the point at which the perpendicular force is being applied. The resulting unit for torque is newton-meter (N-m) or foot-pound (ft-lb).