ASVAB Mechanical Comprehension Simple Machines Practice Test 908819 Results

Your Results Global Average
Questions 5 5
Correct 0 2.87
Score 0% 57%

Review

1

A wedge converts force applied to its blunt end into force __________ its inclined surface.

57% Answer Correctly

opposite to

parallel to

perpendicular to

along


Solution

The wedge is a moving inclined plane that is used to lift, hold, or break apart an object. A wedge converts force applied to its blunt end into force perpendicular to its inclined surface. In contrast to a stationary plane where force is applied to the object being moved, with a wedge the object is stationary and the force is being applied to the plane. Examples of a wedge include knives and chisels.


2

An inclined plane increases ___________ to reduce ____________.

59% Answer Correctly

distance, force

force, power

force, distance

distance, power


Solution

An inclined plane is a simple machine that reduces the force needed to raise an object to a certain height. Work equals force x distance and, by increasing the distance that the object travels, an inclined plane reduces the force necessary to raise it to a particular height. In this case, the mechanical advantage is to make the task easier. An example of an inclined plane is a ramp.


3

What defines the mechanical advantage of a first class lever?

65% Answer Correctly

position of the fulcrum

output distance

input force

output force 


Solution

A first-class lever is used to increase force or distance while changing the direction of the force. The lever pivots on a fulcrum and, when a force is applied to the lever at one side of the fulcrum, the other end moves in the opposite direction. The position of the fulcrum also defines the mechanical advantage of the lever. If the fulcrum is closer to the force being applied, the load can be moved a greater distance at the expense of requiring a greater input force. If the fulcrum is closer to the load, less force is required but the force must be applied over a longer distance. An example of a first-class lever is a seesaw / teeter-totter.


4

The mechanical advantage of a third class lever is always:

37% Answer Correctly

equal to one

greater than one

less than one

not equal to one


Solution

A third class lever is designed to multiply distance and speed at the expense of effort force. Because the effort force is greater than the resistance, the mechanical advantage of a third class lever is always less than one.

An example of a third class lever is a broom. The fulcrum is at your hand on the end of the broom, the effort force is your other hand in the middle, and the resistance is at the bottom bristles. The effort force of your hand in the middle multiplies the distance and speed of the bristles at the bottom but at the expense of producing a brushing force that's less than the force you're applying with your hand.


5

A fixed pulley has a mechanical advantage of:

68% Answer Correctly

1

2

-1

0


Solution

A fixed pulley is used to change the direction of a force and does not multiply the force applied. As such, it has a mechanical advantage of one. The benefit of a fixed pulley is that it can allow the force to be applied at a more convenient angle, for example, pulling downward or horizontally to lift an object instead of upward.