Air Force 2S031 Material Management ASVAB Study Guide

Branch Air Force
MOS 2S031
Title Material Management

Supervises and performs item and monetary accounting and inventory stock control, financial planning, and funds control. Computes requirement, determines allowance, and researches and identifies supplies and equipment requirements. Supervises and performs operations involved in storage, inspection, identification, and receipt of property. Responsible for facility safety and security. Conducts inventories. Operates automated equipment, special purpose government vehicles, and materiel handling equipment.

Performs administrative and management functions. Performs and monitors management (and procedural application) of manual or automated inventory control actions. Computes and accumulates data for use in analysis. Helps develop work standards and methodology. Performs inventories, and ensures timely correction of discrepancies. Prepares, analyses, and evaluates reports, procedures, and policy data. Provides customer service. Inspects and evaluates inventory management activities. Periodically inspects activities for compliance with policies, procedures, and directives for accuracy. Analyzes reports and records activities, reports inefficiencies to supervisors, and recommends corrective actions to improve operations. Evaluates supply efficiency and equipment management activities. Uses management products to evaluate accounts. Provides support to maintenance activities. Coordinates with maintenance activities on repairable component actions. Controls and issues bench stock property. Obtains material required for equipment modification, periodic component exchange, and bills of material in support of maintenance. Accounts for all items contained in mobility readiness spares packages. Inspects and identifies property. Inspects conditions of property received. Compares property with procurement specifications. Identifies property, using technical data and blueprints, and identifies components to subassemblies. Performs shelf life inspections of stock. Performs technical material functions. Develops methods and improves procedures for storage and issuing property. Plans use of storage facilities. Inventories supplies and equipment. Prepares statements of facts surrounding property loss, damage, or destruction through causes other than fair wear and tear. Establishes property locator system. Issues, delivers, and transfers property. Issues, ships, delivers or transfers property from issue, shipping, or transfer destination points through coordination with customers. Controls issue of classified sensitive, and controlled items, obtaining custody or document receipts. Complies data for storage and occupancy planning reports. Pulls, issues, and bins bench stock property. Plans and schedules materiel storage and distribution activities. Ensures availability, and controls use of space, materiel handling equipment, and required spare parts. Establishes fire prevention and safety standards, and ensures compliance. Determines requirements for storage, including those for classified, sensitive, radioactive, hazardous, mobility readiness spares packages and flammable property. Ensures protection of personnel. Prevents deterioration, contamination, and destruction of property. Controls stock rotation to prevent deterioration and permit maximum use of dated and technical order compliance assets. Coordinates with customers regarding priority of deliveries and destination points. Establishes controls to deliver expedited requests within prescribed time limits. Supervises central receiving activity; coordinates requirements for shipping with transportation. Supervises reparable processing center. Maintains assigned unit vehicles.

experience is mandatory supervising functions such as establishing and maintaining reporting and management procedures for stock consumption, analyzing trends in stockage policy and customer support, and supervising storage facilities.

experience is mandatory in functions such as preparing and maintaining documentation and records associated with inventory management actions, receipt, storage, and delivery of property, issuing and transferring property, conducting inventories, or segregating and preparing property for storage and identifying items and condition of property.

Subtests Arithmetic Reasoning, Paragraph Comprehension, Word Knowledge

Arithmetic Reasoning

  • 13 Questions
  • 54 Problems
  • 36 Flash Cards


Number Properties 8 4 10

An integer is any whole number, including zero. An integer can be either positive or negative. Examples include -77, -1, 0, 55, 119.

Rational Numbers

A rational number (or fraction) is represented as a ratio between two integers, a and b, and has the form \({a \over b}\) where a is the numerator and b is the denominator. An improper fraction (\({5 \over 3} \)) has a numerator with a greater absolute value than the denominator and can be converted into a mixed number (\(1 {2 \over 3} \)) which has a whole number part and a fractional part.

Absolute Value

The absolute value is the positive magnitude of a particular number or variable and is indicated by two vertical lines: \(\left|-5\right| = 5\). In the case of a variable absolute value (\(\left|a\right| = 5\)) the value of a can be either positive or negative (a = -5 or a = 5).

Factors & Multiples

A factor is a positive integer that divides evenly into a given number. The factors of 8 are 1, 2, 4, and 8. A multiple is a number that is the product of that number and an integer. The multiples of 8 are 0, 8, 16, 24, ...

Greatest Common Factor

The greatest common factor (GCF) is the greatest factor that divides two integers.

Least Common Multiple

The least common multiple (LCM) is the smallest positive integer that is a multiple of two or more integers.

Prime Number

A prime number is an integer greater than 1 that has no factors other than 1 and itself. Examples of prime numbers include 2, 3, 5, 7, and 11.

Operations on Fractions 5 2
Simplifying Fractions

Fractions are generally presented with the numerator and denominator as small as is possible meaning there is no number, except one, that can be divided evenly into both the numerator and the denominator. To reduce a fraction to lowest terms, divide the numerator and denominator by their greatest common factor (GCF).

Adding & Subtracting Fractions

Fractions must share a common denominator in order to be added or subtracted. The common denominator is the least common multiple of all the denominators.

Multiplying & Dividing Fractions

To multiply fractions, multiply the numerators together and then multiply the denominators together. To divide fractions, invert the second fraction (get the reciprocal) and multiply it by the first.

Operations on Exponents 1 6 7
Defining Exponents

An exponent (cbe) consists of coefficient (c) and a base (b) raised to a power (e). The exponent indicates the number of times that the base is multiplied by itself. A base with an exponent of 1 equals the base (b1 = b) and a base with an exponent of 0 equals 1 ( (b0 = 1).

Adding & Subtracting Exponents

To add or subtract terms with exponents, both the base and the exponent must be the same. If the base and the exponent are the same, add or subtract the coefficients and retain the base and exponent. For example, 3x2 + 2x2 = 5x2 and 3x2 - 2x2 = x2 but x2 + x4 and x4 - x2 cannot be combined.

Multiplying & Dividing Exponents

To multiply terms with the same base, multiply the coefficients and add the exponents. To divide terms with the same base, divide the coefficients and subtract the exponents. For example, 3x2 x 2x2 = 6x4 and \({8x^5 \over 4x^2} \) = 2x(5-2) = 2x3.

Exponent to a Power

To raise a term with an exponent to another exponent, retain the base and multiply the exponents: (x2)3 = x(2x3) = x6

Negative Exponent

A negative exponent indicates the number of times that the base is divided by itself. To convert a negative exponent to a positive exponent, calculate the positive exponent then take the reciprocal: \(b^{-e} = { 1 \over b^e }\). For example, \(3^{-2} = {1 \over 3^2} = {1 \over 9}\)

Operations on Radicals 6 4
Defining Radicals

Radicals (or roots) are the opposite operation of applying exponents. With exponents, you're multiplying a base by itself some number of times while with roots you're dividing the base by itself some number of times. A radical term looks like \(\sqrt[d]{r}\) and consists of a radicand (r) and a degree (d). The degree is the number of times the radicand is divided by itself. If no degree is specified, the degree defaults to 2 (a square root).

Simplifying Radicals

The radicand of a simplified radical has no perfect square factors. A perfect square is the product of a number multiplied by itself (squared). To simplify a radical, factor out the perfect squares by recognizing that \(\sqrt{a^2} = a\). For example, \(\sqrt{64} = \sqrt{16 \times 4} = \sqrt{4^2 \times 2^2} = 4 \times 2 = 8\).

Adding & Subtracting Radicals

To add or subtract radicals, the degree and radicand must be the same. For example, \(2\sqrt{3} + 3\sqrt{3} = 5\sqrt{3}\) but \(2\sqrt{2} + 2\sqrt{3}\) cannot be added because they have different radicands.

Multiplying & Dividing Radicals

To multiply or divide radicals, multiply or divide the coefficients and radicands separately: \(x\sqrt{a} \times y\sqrt{b} = xy\sqrt{ab}\) and \({x\sqrt{a} \over y\sqrt{b}} = {x \over y}\sqrt{a \over b}\)

Square Root of a Fraction

To take the square root of a fraction, break the fraction into two separate roots then calculate the square root of the numerator and denominator separately. For example, \(\sqrt{9 \over 16}\) = \({\sqrt{9}} \over {\sqrt{16}}\) = \({3 \over 4}\)

Miscellaneous 1 2 2
Scientific Notation

Scientific notation is a method of writing very small or very large numbers. The first part will be a number between one and ten (typically a decimal) and the second part will be a power of 10. For example, 98,760 in scientific notation is 9.876 x 104 with the 4 indicating the number of places the decimal point was moved to the left. A power of 10 with a negative exponent indicates that the decimal point was moved to the right. For example, 0.0123 in scientific notation is 1.23 x 10-2.


A factorial has the form n! and is the product of the integer (n) and all the positive integers below it. For example, 5! = 5 x 4 x 3 x 2 x 1 = 120.


Order of Operations 3 1 4

Arithmetic operations must be performed in the following specific order:

  1. Parentheses
  2. Exponents
  3. Multiplication and Division (from L to R)
  4. Addition and Subtraction (from L to R)

The acronym PEMDAS can help remind you of the order.

Distributive Property - Multiplication

The distributive property for multiplication helps in solving expressions like a(b + c). It specifies that the result of multiplying one number by the sum or difference of two numbers can be obtained by multiplying each number individually and then totaling the results: a(b + c) = ab + ac. For example, 4(10-5) = (4 x 10) - (4 x 5) = 40 - 20 = 20.

Distributive Property - Division

The distributive property for division helps in solving expressions like \({b + c \over a}\). It specifies that the result of dividing a fraction with multiple terms in the numerator and one term in the denominator can be obtained by dividing each term individually and then totaling the results: \({b + c \over a} = {b \over a} + {c \over a}\). For example, \({a^3 + 6a^2 \over a^2} = {a^3 \over a^2} + {6a^2 \over a^2} = a + 6\).

Commutative Property

The commutative property states that, when adding or multiplying numbers, the order in which they're added or multiplied does not matter. For example, 3 + 4 and 4 + 3 give the same result, as do 3 x 4 and 4 x 3.

Ratios 15 4

Ratios relate one quantity to another and are presented using a colon or as a fraction. For example, 2:3 or \({2 \over 3}\) would be the ratio of red to green marbles if a jar contained two red marbles for every three green marbles.


A proportion is a statement that two ratios are equal: a:b = c:d, \({a \over b} = {c \over d}\). To solve proportions with a variable term, cross-multiply: \({a \over 8} = {3 \over 6} \), 6a = 24, a = 4.


A rate is a ratio that compares two related quantities. Common rates are speed = \({distance \over time}\), flow = \({amount \over time}\), and defect = \({errors \over units}\).


Percentages are ratios of an amount compared to 100. The percent change of an old to new value is equal to 100% x \({ new - old \over old }\).

Statistics 4 3

The average (or mean) of a group of terms is the sum of the terms divided by the number of terms. Average = \({a_1 + a_2 + ... + a_n \over n}\)


A sequence is a group of ordered numbers. An arithmetic sequence is a sequence in which each successive number is equal to the number before it plus some constant number.


Probability is the numerical likelihood that a specific outcome will occur. Probability = \({ \text{outcomes of interest} \over \text{possible outcomes}}\). To find the probability that two events will occur, find the probability of each and multiply them together.

Word Problems 11

Many of the arithmetic reasoning problems on the ASVAB will be in the form of word problems that will test not only the concepts in this study guide but those in Math Knowledge as well. Practice these word problems to get comfortable with translating the text into math equations and then solving those equations.

Paragraph Comprehension

Word Knowledge