Air Force 3D032 Cyber Systems Operations ASVAB Study Guide

Branch Air Force
MOS 3D032
Title Cyber Systems Operations

Installs, supports and maintains servers or other computer systems and plans for responding to service outages and interruptions to network operations. Administers server-based networked systems, distributed applications, network storage, messaging, and application monitoring required to provision, sustain, operate and integrate cyber networked systems and applications in garrison and at deployed locations. Core competencies include: server operating systems, database administration, web technologies, systems-related project management and supervising computer operators as well as consultant for computer-based problems beyond the knowledge of Client Systems technicians. Supports identification, reconnaissance and exploitation of vulnerabilities while enhancing capabilities within cyber environments to achieve desired affects.

Experience in functions such as system operations, micro- and multi-user technical support, system restoral, resource counting, or security. Experience supervising one of the following functions: analysis of system failure and restoral, C-CS operations, command and control systems support, system administration, and resource management.

Provides core services by designing, configuring, installing, and managing data services at the operating system and server application level. Provides directory services utilizing dynamically-assigned IP addresses, domain name server, storage area network, and electronic messaging resources. Manages secure authentication methods utilizing public key infrastructure (PKI) technologies and procedures. Standardizes user privileges and system settings using automated deployment tools such as group policy objects (GPO) system management server. Implements security fixes, operating system patches, and antivirus software. Develops, tests, and implements local restoral and contingency operations plans. Processes and reviews C4 systems requirement documentation, telecommunication service requests, status of acquisition messages, and telecommunication service orders. Performs strategic and budget planning for networks. Performs system resource management, manages system accounts, performs system-wide backups and data recovery, and load and capacity planning and management. Administers: classified and unclassified message traffic via electronic mail systems, database operations, implements conversions, and investigates problems in database environment. Ensures continuing systems operability by providing ongoing optimization and problem solving support. Applies computer security policies to safeguard systems and information. Categorizes, isolates, and resolves system problems. Performs fault isolation by validating, isolating, correcting faults, and verifying service restoral with customers. Processes, documents and coordinates resolution of trouble calls from lower support echelons. Processes scheduled and authorized outages. Submits outage reports in response to unscheduled outages. Implements security updates and patches to include: Information Assurance Vulnerability Assessments (IAVA), C4 Notice to Airman (C4 NOTAM), Time Compliance Network Orders (TCNO), Combat Information Transport System (CITS), Time Compliance Technical Order (TCTO), operating system patches, and antivirus software. Implements and enforces national, DoD, and Air Force security policies and directives. Performs proactive security functions to deter, detect, isolate, contain, and recover from information system and network security intrusions. Performs system sanitation resulting from Classified Message Incidents (CMIs). Performs and supports information warfare operations within strictly controlled parameters. Researches latest system threats to develop and test tactics, techniques and procedures (TTPs) for both defensive and offensive information operations. Employs developed TTPs on Air Force and DoD computer networks to exploit enemy information systems and defend against hostile information operations. Identifies, analyzes, targets, and exploits adversarys network operations and systems within specifically defined guidelines and rules of engagement. Reviews and implements C4 systems requirements. Performs strategic and budget planning for systems hardware and software. Coordinates and implements system service level agreements and memorandum of understanding with user agencies.

Subtests Arithmetic Reasoning, Paragraph Comprehension, Word Knowledge

Arithmetic Reasoning

  • 13 Questions
  • 54 Problems
  • 36 Flash Cards


Number Properties 8 4 10

An integer is any whole number, including zero. An integer can be either positive or negative. Examples include -77, -1, 0, 55, 119.

Rational Numbers

A rational number (or fraction) is represented as a ratio between two integers, a and b, and has the form \({a \over b}\) where a is the numerator and b is the denominator. An improper fraction (\({5 \over 3} \)) has a numerator with a greater absolute value than the denominator and can be converted into a mixed number (\(1 {2 \over 3} \)) which has a whole number part and a fractional part.

Absolute Value

The absolute value is the positive magnitude of a particular number or variable and is indicated by two vertical lines: \(\left|-5\right| = 5\). In the case of a variable absolute value (\(\left|a\right| = 5\)) the value of a can be either positive or negative (a = -5 or a = 5).

Factors & Multiples

A factor is a positive integer that divides evenly into a given number. The factors of 8 are 1, 2, 4, and 8. A multiple is a number that is the product of that number and an integer. The multiples of 8 are 0, 8, 16, 24, ...

Greatest Common Factor

The greatest common factor (GCF) is the greatest factor that divides two integers.

Least Common Multiple

The least common multiple (LCM) is the smallest positive integer that is a multiple of two or more integers.

Prime Number

A prime number is an integer greater than 1 that has no factors other than 1 and itself. Examples of prime numbers include 2, 3, 5, 7, and 11.

Operations on Fractions 5 2
Simplifying Fractions

Fractions are generally presented with the numerator and denominator as small as is possible meaning there is no number, except one, that can be divided evenly into both the numerator and the denominator. To reduce a fraction to lowest terms, divide the numerator and denominator by their greatest common factor (GCF).

Adding & Subtracting Fractions

Fractions must share a common denominator in order to be added or subtracted. The common denominator is the least common multiple of all the denominators.

Multiplying & Dividing Fractions

To multiply fractions, multiply the numerators together and then multiply the denominators together. To divide fractions, invert the second fraction (get the reciprocal) and multiply it by the first.

Operations on Exponents 1 6 7
Defining Exponents

An exponent (cbe) consists of coefficient (c) and a base (b) raised to a power (e). The exponent indicates the number of times that the base is multiplied by itself. A base with an exponent of 1 equals the base (b1 = b) and a base with an exponent of 0 equals 1 ( (b0 = 1).

Adding & Subtracting Exponents

To add or subtract terms with exponents, both the base and the exponent must be the same. If the base and the exponent are the same, add or subtract the coefficients and retain the base and exponent. For example, 3x2 + 2x2 = 5x2 and 3x2 - 2x2 = x2 but x2 + x4 and x4 - x2 cannot be combined.

Multiplying & Dividing Exponents

To multiply terms with the same base, multiply the coefficients and add the exponents. To divide terms with the same base, divide the coefficients and subtract the exponents. For example, 3x2 x 2x2 = 6x4 and \({8x^5 \over 4x^2} \) = 2x(5-2) = 2x3.

Exponent to a Power

To raise a term with an exponent to another exponent, retain the base and multiply the exponents: (x2)3 = x(2x3) = x6

Negative Exponent

A negative exponent indicates the number of times that the base is divided by itself. To convert a negative exponent to a positive exponent, calculate the positive exponent then take the reciprocal: \(b^{-e} = { 1 \over b^e }\). For example, \(3^{-2} = {1 \over 3^2} = {1 \over 9}\)

Operations on Radicals 6 4
Defining Radicals

Radicals (or roots) are the opposite operation of applying exponents. With exponents, you're multiplying a base by itself some number of times while with roots you're dividing the base by itself some number of times. A radical term looks like \(\sqrt[d]{r}\) and consists of a radicand (r) and a degree (d). The degree is the number of times the radicand is divided by itself. If no degree is specified, the degree defaults to 2 (a square root).

Simplifying Radicals

The radicand of a simplified radical has no perfect square factors. A perfect square is the product of a number multiplied by itself (squared). To simplify a radical, factor out the perfect squares by recognizing that \(\sqrt{a^2} = a\). For example, \(\sqrt{64} = \sqrt{16 \times 4} = \sqrt{4^2 \times 2^2} = 4 \times 2 = 8\).

Adding & Subtracting Radicals

To add or subtract radicals, the degree and radicand must be the same. For example, \(2\sqrt{3} + 3\sqrt{3} = 5\sqrt{3}\) but \(2\sqrt{2} + 2\sqrt{3}\) cannot be added because they have different radicands.

Multiplying & Dividing Radicals

To multiply or divide radicals, multiply or divide the coefficients and radicands separately: \(x\sqrt{a} \times y\sqrt{b} = xy\sqrt{ab}\) and \({x\sqrt{a} \over y\sqrt{b}} = {x \over y}\sqrt{a \over b}\)

Square Root of a Fraction

To take the square root of a fraction, break the fraction into two separate roots then calculate the square root of the numerator and denominator separately. For example, \(\sqrt{9 \over 16}\) = \({\sqrt{9}} \over {\sqrt{16}}\) = \({3 \over 4}\)

Miscellaneous 1 2 2
Scientific Notation

Scientific notation is a method of writing very small or very large numbers. The first part will be a number between one and ten (typically a decimal) and the second part will be a power of 10. For example, 98,760 in scientific notation is 9.876 x 104 with the 4 indicating the number of places the decimal point was moved to the left. A power of 10 with a negative exponent indicates that the decimal point was moved to the right. For example, 0.0123 in scientific notation is 1.23 x 10-2.


A factorial has the form n! and is the product of the integer (n) and all the positive integers below it. For example, 5! = 5 x 4 x 3 x 2 x 1 = 120.


Order of Operations 3 1 4

Arithmetic operations must be performed in the following specific order:

  1. Parentheses
  2. Exponents
  3. Multiplication and Division (from L to R)
  4. Addition and Subtraction (from L to R)

The acronym PEMDAS can help remind you of the order.

Distributive Property - Multiplication

The distributive property for multiplication helps in solving expressions like a(b + c). It specifies that the result of multiplying one number by the sum or difference of two numbers can be obtained by multiplying each number individually and then totaling the results: a(b + c) = ab + ac. For example, 4(10-5) = (4 x 10) - (4 x 5) = 40 - 20 = 20.

Distributive Property - Division

The distributive property for division helps in solving expressions like \({b + c \over a}\). It specifies that the result of dividing a fraction with multiple terms in the numerator and one term in the denominator can be obtained by dividing each term individually and then totaling the results: \({b + c \over a} = {b \over a} + {c \over a}\). For example, \({a^3 + 6a^2 \over a^2} = {a^3 \over a^2} + {6a^2 \over a^2} = a + 6\).

Commutative Property

The commutative property states that, when adding or multiplying numbers, the order in which they're added or multiplied does not matter. For example, 3 + 4 and 4 + 3 give the same result, as do 3 x 4 and 4 x 3.

Ratios 15 4

Ratios relate one quantity to another and are presented using a colon or as a fraction. For example, 2:3 or \({2 \over 3}\) would be the ratio of red to green marbles if a jar contained two red marbles for every three green marbles.


A proportion is a statement that two ratios are equal: a:b = c:d, \({a \over b} = {c \over d}\). To solve proportions with a variable term, cross-multiply: \({a \over 8} = {3 \over 6} \), 6a = 24, a = 4.


A rate is a ratio that compares two related quantities. Common rates are speed = \({distance \over time}\), flow = \({amount \over time}\), and defect = \({errors \over units}\).


Percentages are ratios of an amount compared to 100. The percent change of an old to new value is equal to 100% x \({ new - old \over old }\).

Statistics 4 3

The average (or mean) of a group of terms is the sum of the terms divided by the number of terms. Average = \({a_1 + a_2 + ... + a_n \over n}\)


A sequence is a group of ordered numbers. An arithmetic sequence is a sequence in which each successive number is equal to the number before it plus some constant number.


Probability is the numerical likelihood that a specific outcome will occur. Probability = \({ \text{outcomes of interest} \over \text{possible outcomes}}\). To find the probability that two events will occur, find the probability of each and multiply them together.

Word Problems 11

Many of the arithmetic reasoning problems on the ASVAB will be in the form of word problems that will test not only the concepts in this study guide but those in Math Knowledge as well. Practice these word problems to get comfortable with translating the text into math equations and then solving those equations.

Paragraph Comprehension

Word Knowledge